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Theoretically the concept of species ecological specialization is very useful, however, practically it
is often difficult to quantify due to a lack of relevant environmental data. We introduce the Ecologi-
cal Specialization Index (ESI), which describes the degree of specialization of a species based on its
realized niche along multiple environmental gradients and is conceptually based on the co-occur-
rence specialization metric theta introduced by Fridley et al. (2007). We estimated ESI for species
of the Czech flora occurring in at least 10 vegetation plots stored in the Czech National Phytosocio-
logical Database. We prepared three sets of ESI values calculated from three datasets including (i)
plots of all vegetation types (ESIw, 1597 species), (ii) only plots of non-forest vegetation (ESInf,
1529 species), and (iii) only plots of forest vegetation (ESIf, 881 species). We also provide the fre-
quency of species in the datasets, since the reliability of the calculated ESI values increases with the
species frequency. The use of these ESI values is limited to the Czech Republic, and in the case of
less frequent species, the value can be influenced by sampling bias. To facilitate understanding of
the ecological meaning of ESI, we related the calculated values of ESIw to several species attributes
and applied them in a case study using a local vegetation dataset from a deep river valley. We found
that ESI correlates significantly with specialization metrics based on the number of phytosociological
associations and habitats in which the focal species occur. The species listed in the national Red List
in higher risk categories are on average more specialized than less threatened species. Neophytes
tend to be significantly less specialized than archaeophytes and native species. When related to
Ellenberg-type indicator values for the Czech Republic, specialists tend to be more shade-tolerant,
better adapted to nutrient-poor soils and soils with either a low or high (but not intermediate) pH and
to either warm or cold (but not intermediate) habitats. In a case study of herbaceous plants species in
a forest understory on river valley slopes, we found that specialists tend to be confined to deeper
soils on cooler north-facing slopes, to stony soils in ravine forests and sites with a denser canopy of
woody species. In contrast, shallow lithic soils on eroded south-facing slopes and sites with a more
open canopy tend to be dominated by generalists. The complete list of ESI values is included in an
electronic appendix to this paper.

K e y w o r d s: Czech Republic, ecological amplitude, flora, generalists, realized niche breadth,
specialists, theta, vascular plants, vegetation-plot database.

Introduction

Specialist species (specialists) are those that are restricted to specific habitats, adapted to
using a narrow range of resources or tolerating a narrow range of environmental condi-
tions. Conversely, generalist species (generalists) occur in many different habitats, utilize
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a wide range of resources or are tolerant of a broad range of environmental conditions.
There is a natural trade-off between being either specialist or generalist; as put by MacAr-
thur (1972), “jack of all trades is a master of none”. Although generalists can use a wide
range of resources, they are not particularly good at using any of them efficiently. Gener-
alists and specialists are relative terms: they mark the opposite extremes in a continuum
of ecological specialization, but most species are somewhere between these extremes.

Ecologists predict various aspects of the ecology of a species depending on the degree
of their ecological specialization. For example, specialist species are expected to be more
sensitive to habitat change (both natural and human-induced) than generalists. Therefore,
specialists are more susceptible to population reduction or even extinction (Walker &
Preston 2006), which gives them on average a higher conservation priority than general-
ists. Because of their link to a narrow range of habitats, specialists are also likely to be
better indicators of habitat quality than generalists (Ellenberg et al. 1991, Chytrý et al.
2018). While the concept of ecological specialization is theoretically sound and attrac-
tive, in practice the degree of specialization of a species is difficult to quantify. A com-
monly used method is to link species occurrences to one or several environmental gradi-
ents and quantify a species niche breadth in terms of the variation in the position of the
species on this gradient (e.g. using species response curves, see Coudun & Gégout 2005,
Hájková et al. 2008, Wagner et al. 2017). Unfortunately, high-quality environmental
measurements for quantifying species niche breadth are usually limited to a few proxy
variables that are easy to measure but do not have a direct causal effect on plant growth
and other physiological processes. A further issue is that a single species can be a specialist
along one gradient and a generalist along another one.

An alternative approach, which we use in this study, is to quantify the species niche
breadth using indirect estimations of habitat qualities in which the species occurs. Fridley
et al. (2007) introduced a method of measuring species habitat specialization, which does
not require data about environmental factors at sites where the species are recorded. The
method uses the pattern of co-occurrence of the focal species with other species in the
community across a number of sites and requires the availability of a (possibly large)
dataset of community samples (records of species co-occurring at individual sites) from
a broad range of different habitats (called source dataset in this paper). It tracks the occur-
rence of a focal species in many samples and identifies with which species the focal spe-
cies co-occurs at different sites. The species composition of these co-occurring species
quantifies the local habitat conditions at each site. If we choose several samples that con-
tain the focal species, and these samples differ considerably in species composition, it is
likely that they also differ in habitat conditions. Then, a focal species that is able to grow
in a wide range of habitat conditions is likely to be a generalist. Conversely, if the samples
containing the focal species have similar species compositions, their habitat conditions
are probably also similar, and the focal species is likely to be a specialist. Unlike mea-
sures of specialization based on estimated species amplitudes along a measured environ-
mental variable, the co-occurrence based measure takes into consideration many envi-
ronmental factors. The differences in species composition, i.e. beta diversity, among
samples containing the focal species can be measured in different ways. The original metric
� proposed by Fridley et al. (2007) was based on additive beta diversity (Lande 1996)
with high values for generalists and low values for specialists. Here, following the sug-
gestion of Zelený (2009), we replace the additive measure of beta diversity by a multipli-
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cative measure (Whittaker 1960) and introduce a more intuitive measure called Ecologi-
cal Specialization Index (ESI), calculated as an inverted �-value. ESI increases with
actual increase in species specialization, and its values are real numbers in the range 0–9.
Because of the way ESI is calculated, its values represent realized species niche breadth
taking into account many environmental factors, approximated by the species composi-
tion and are related to the concept of realized niche as a hyper-volume in the multidimen-
sional space defined by ecological variables, in which species can maintain a viable pop-
ulation (Hutchinson 1957).

The co-occurrence based index of ecological specialization critically depends on the
quality and quantity of underlying compositional data in the source dataset and their geo-
graphical distribution. We used the Czech National Phytosociological Database (Chytrý
& Rafajová 2003), which contains community samples from all vegetation types occur-
ring in the Czech Republic. However, the different contexts in which the ESI values are
used may require different approaches to their definition. In particular, the degree of spe-
cialization of the same species may differ between forest and non-forest habitats. For
example, some species of open habitats may behave as specialists when growing in for-
ests while behaving as generalists when growing outside forests. Therefore we calculated
three sets of ESI values: across all vegetation types, for non-forest vegetation only, and
for forest vegetation only.

In this paper, we describe a new dataset of Ecological Specialization Indices that we
developed for species of the Czech flora and offer it for ecological analyses. To get
a better insight into the ecological interpretation of the ESI values, we related them to
the attributes of selected species like taxon origin (native vs alien), Red List categories
and Ellenberg-type indicator values for the Czech flora. We also compared them with
alternative ways of quantifying ecological specialization using compositional data, repre-
sented by the number of phytosociological associations and habitat types in which the
species occur. Finally, in order to illustrate the potential application of the ESI values in
vegetation studies we used a local vegetation dataset with several measured environmen-
tal variables.

Materials and methods

Vegetation data

The source dataset used in this analysis is a subset of the Czech National Phytosocio-
logical Database (Chytrý & Rafajová 2003), which at the time of data preparation (2013)
contained community samples from 93,704 vegetation plots. We selected only plots with
geographical coordinates (92,249 plots), removed records of non-vascular plants and
juvenile individuals of woody plants and merged separate records of the same species in
the tree and shrub layer to ensure that each species occurs only once in each plot. Species
nomenclature follows Danihelka et al. (2012). Then we geographically stratified the
database to reduce oversampling of similar vegetation types within some regions
(Knollová et al. 2006). Stratification was done by assigning the plots into cells of a geo-
graphic grid of 0.75' of latitude and 1.25' of longitude (approx. 1.5 × 1.4 km) and apply-
ing an heterogeneity-constrained random (HCR) resampling procedure to choose a fixed
maximum number of plots of distinct species composition from each cell (Lengyel et al.
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2011). Within each grid cell, we calculated Bray-Curtis dissimilarity among all pairs of
plots (using log-transformed percentage covers in species composition data), and applied
the HCR resampling to select the optimal subset of plots retaining maximum mean
pairwise dissimilarity among selected plots. Since the grid cells may contain plots
belonging to a wide range of different vegetation types, we implemented the rule pro-
posed by Wiser & De Cáceres (2013) that more plots are selected from grid cells where
plots have higher compositional heterogeneity, with the minimum and the maximum
number of selected plots 5 and 20, respectively. The resulting dataset, called the ‘whole
dataset’ throughout this study, contains 67,453 vegetation plots and 2071 species, sam-
pled between 1923 and 2012 by 574 different researchers. More than half of these plots
(34,070) were assigned to one of 494 phytosociological associations, out of the 496 rec-
ognized in the Czech Republic according to Chytrý (2007–2013). We further divided the
original dataset into a subset including only plots representing non-forest vegetation
(72,719 plots) and those representing forest and scrub vegetation (19,530 plots). As for-
est we considered plots in which the sum of the canopy cover of the different species of
trees was greater than 25%, with the exception of the tree species that form a light canopy
(Betula sp., Larix decidua, Pinus sp., Populus tremula and Taxus baccata) for which the
threshold was decreased to 15%. For each of the subsets, we also calculated the HCR
resampling using the same method and parameters as in the case of the whole dataset,
resulting in the ‘non-forest dataset’ (54,579 plots with 2034 species) and ‘forest dataset’
(16,397 plots with 1437 species).

Ecological Specialization Index

We developed the Ecological Specialization Index (ESI) based on the co-occurrence met-
ric � (Fridley et al. 2007). The � metric for the focal species is a beta diversity of a subset
of vegetation plots containing this species. Since beta diversity is high if the focal species
is a generalist and low if it is a specialist, we use a simple formula to invert these values
into a more intuitive ESI, with values increasing with the degree of species specialization.

As a measure of beta diversity, we used Whittaker’s multiplicative beta (�W, Whittaker
1960) calculated as �W = � �/ , where � is the cumulative number of species in a set of n
plots and � is the mean number of species in this set of plots. We based this choice on the
study of Zelený (2009), which showed that the original algorithm of Fridley et al. (2007),
using an additive beta diversity measure (Lande 1996), generates specialization values that
are dependent on the size of the species pool of a community in which the focal species
mostly occurs (species occurring in communities with large species pools tend to be identi-
fied as generalist more often than species occurring in communities with small species
pools). Although other alternative metrics have been proposed (e.g. Manthey & Fridley
2009, Botta-Dukát 2012, Boulangeat et al. 2012), our choice of �W is justified by extensive
evaluation of different metrics using simulated data of various properties (Zelený, unpub-
lished results).

Since �W depends on the number of plots (n) from which it is calculated, and the size of the
subset of plots containing the focal species is different for different species, �W calculated
for different species would not be comparable. Therefore, we used sample-based rarefac-
tion to estimate the total number of species occurring on average in a subset of 10
randomly selected plots from the dataset containing the focal species (�10), and divided
the estimated value by the mean number of species in individual plots (�). Note that this
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procedure is analogous to the original algorithm proposed by Fridley et al. (2007), which
is based on subsampling, i.e. random selection of n subplots (n = 10 in our case) from the
subset of plots containing the focal species, repeating this subsampling many times, and
averaging beta diversities calculated for each subsample. Instead of subsampling with
a high number of randomizations, we calculated both �10 and � analytically using the
sample-based rarefaction equation (e.g. Ugland et al. 2003), which returns virtually iden-
tical results while requiring much less computational time.

Since �W is known to be highly sensitive to the presence of few community samples
with very different species composition in the dataset (Manthey & Fridley 2009), we fol-
lowed the suggestion of Botta-Dukát (2012) and removed these plots (outliers) prior to
calculating �W. We used the distance-based algorithm of McCune & Mefford (1999) to
calculate the mean of pairwise compositional dissimilarities of the focal plot to all the
other plots in the subset, i.e. mean value of a single column (or row) within a symmetric
pairwise dissimilarity matrix without diagonal values (zeros). Since this mean dissimilar-
ity is relatively high in the case of outliers, we removed the plots with mean dissimilarity
higher than mean dissimilarity between all pairs of plots plus two standard deviations of
its variation. As a measure of dissimilarity, Botta-Dukát (2012) suggested the use of
Euclidean distance applied to presence-absence data. However, we opted for Sřrensen
dissimilarity (one complement of Sřrensen coefficient; Sřrensen 1948), which is com-
patible with �W used to calculate the overall beta diversity of the subset (�W for two sam-
ples is equal to Sřrensen dissimilarity between these two samples minus one; Tuomisto
2010).

Theoretically, the values of �W are in units of the number of distinct communities with
no overlap in species composition. For a subset of 10 plots, the �W value ranges between 1
and 10 (1 if all plots have identical species composition, and 10 if these plots share no
species). We inverted �W into ESI using the formula ESI = 10 – �W; in this way, high ESI
values indicate specialists and low ESI values indicate generalists. Note that the ESI met-
ric is continuous, theoretically ranging between 0 and 9, although the extreme values are
unlikely to occur.

In summary, the steps in the calculation of ESI for the focal species are: (i) Select
a subset of vegetation plots containing the focal species from the whole dataset. (ii)
Remove outliers from this subset using the distance-based algorithm with Sřrensen dis-
similarity. (iii) Calculate the beta diversity of the subset using �W by rarefying the dataset
to 10 plots. (iv) Repeat steps 1–3 for all species with at least 10 occurrences in the whole
dataset. (v) Recalculate the �W values into ESI using the formula ESI = 10 – �W. (vi)
Repeat steps 1–5 for non-forest and forest datasets. Note that two species frequency
thresholds apply: one determines the minimum number of plots with the focal species
that are included in the analysis after removing potential outliers (freqmin), and the other is
the number of plots from which �W is calculated (n). Theoretically should apply that
freqmin � n; in this study, both thresholds are set to 10.

Comparison of ESI with other attributes of species

To illustrate the patterns described by ESI, we compared the ESI values for individual
species calculated based on the whole dataset (ESIw) with several other attributes of these
species.

Zelený & Chytrý: Ecological specialization in the Czech flora 97



Species occurrence frequency. We calculated the Spearman rank correlation
between ESI and species frequency, defined as the number of vegetation plots in which
the focal species is recorded within the whole dataset.

The number of phytosociological associations in which the species occurs. Some
of vegetation plots used to calculate the ESI were assigned to one of 494 phytosociological
associations representing nearly the complete variation in the species composition of
Czech vegetation. With some simplification, each of these associations represents a dif-
ferent combination of habitat conditions, and the specialist species should be expected to
occur in fewer associations than generalists. Since different associations are represented
by different numbers of plots in the dataset, we quantified the number of associations in
three alternative ways: (i) the number of associations in which the focal species occurs
(Aocc), (ii) the number of associations in which the focal species occurs in a large propor-
tion of the vegetation plots of that association (Arel), and (iii) the number of associations
in which the focal species occurs in a high absolute number of vegetation plots of that
association (Aabs). The main difference is that Aocc does not consider how many plots of
the given association the focal species occurs in while Arel and Aabs do. While Aocc is cal-
culated as a simple count of associations in which the focal species occurs, Arel and Aabs

are calculated using the exponential of the Shannon entropy index (Shannon 1948), also
known as Shannon diversity index (Chao et al. 2014). The Shannon entropy index is cal-
culated as H’ = –� (pi ln pi), where pi is the relative abundance of species i and quantifies
the diversity of species in a community while considering both the number of species and
the differences in their relative abundances. The Shannon diversity index uses the expo-
nential function eH’ to convert the units from entropy into “the number of effective spe-
cies”, which is equivalent to the number of common species in the case of the Shannon
diversity index (Jost 2006). In this study, we replaced “the number of effective species”
by “the number of effective phytosociological associations”, i.e. those in which the focal
species occurs more frequently, measured either by relative proportions or absolute
counts. Parameter pi represents either the normalized (i.e. divided by the sum of all val-
ues) proportion of plots of the association in which the focal species occurs (Arel) or nor-
malized absolute number of plots of the association in which the focal species occurs
(Aabs; see Appendix 1 for equations). The logic of this calculation is that the association
with a higher relative (Arel) or absolute (Aabs) number of plots containing the focal species
contributes more to the overall number of associations containing this species. We calcu-
lated Spearman’s rank correlation between ESIw and Aocc, Arel and Aabs, respectively.
Since common species may have a higher probability of occurring in more associations
just because of their higher overall frequency, we also calculated partial Spearman’s cor-
relation between each pair of variables (i.e. ESIw with Aocc, ESIw with Arel and ESIw with
Aabs) while controlling for the frequency of each species in the dataset (freqw).

The number of habitats in which the species occurs. Similarly to the number of
associations, the number of habitats in which the focal species occurs can also serve as
a measure of species niche breadth (e.g. Chytrý et al. 2005, Pyšek et al. 2009). Sádlo et al.
(2007) compiled a dataset of occurrence of species of the Czech flora in 88 different habi-
tats. The assessment of the affinities of species to these habitats was first done by a statis-
tical analysis of a large number of vegetation plots from the Czech National Phytosocio-
logical Database and then extensively revised based on the expert judgement. The prefer-
ence of species for each of these 88 habitats was quantified on a scale from 1 to 4, with 1
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meaning ‘species occurrence’ (species can grow in the habitat, but it is not its optimum
one), 2 meaning ‘species optimum’ (the habitat or a part of it is the ecological optimum
for this species), and 3 and 4 meaning species optimum combined with different degrees
of dominance (high cover) in the habitat. For each species, we counted ‘the number of
habitats in which the focal species occurs’ (Hocc, i.e. number of habitats classified as 1–4
for that species) and ‘the number of habitats in which the species has its optimum’ (Hopt,
i.e. the number of habitats classified as 2–4). We calculated Spearman’s rank correlation
coefficient between ESIw and Hocc or Hopt, respectively, and partial Spearman’s rank cor-
relation between each pair while controlling for species frequency in the dataset (freqw).

Species origin. We classified species into archaeophytes (alien species introduced
before the year 1500), neophytes (alien species introduced after that year) and native fol-
lowing Pyšek et al. (2012). We tested the differences in ESI values between these three
categories using one-way ANOVA, followed by Tukey’s HSD tests.

Red List category. We classified species into the IUCN Red List categories (IUCN
2012) according to the national Red List (Grulich 2017). The IUCN Red List categories
include: RE – regionally extinct, CR – critically endangered, EN – endangered, VU – vul-
nerable, NT – near threatened, LC – least concern, DD – data deficient, and NE – not
evaluated. We excluded the DD category (eight species) and merged the categories LC
and NE into LC, because species not included in the previous national Red List (i.e. spe-
cies with the lowest risk of extinction) were not evaluated by Grulich (2017), assuming
that nearly all of them would fall within the LC category. We used one-way ANOVA fol-
lowed by Tukey’s HSD multiple comparison tests (P < 0.05) to test the differences in ESI
values between the Red List categories.

Ellenberg-type indicator values for the Czech Republic. Ellenberg indicator values
quantify species optima for particular environmental factors using a simple ordinal scale
(Ellenberg et al. 1991). We used a dataset of Ellenberg-type indicator values adopted for
the Czech Republic (Chytrý et al. 2018). This dataset also includes species not present in
the original Ellenberg’s tables and contains adjusted values for some other species. Czech
indicator values are based on an extensive expert revision that considered species ecolog-
ical preferences within the Czech Republic and outside the country, supported by a statis-
tical analysis of data from the Czech National Phytosociological Database (Chytrý &
Rafajová 2003). The values are given on the same scale as the original Ellenberg values
and are available for light, temperature, moisture, reaction, nutrients and salinity, but not
for continentality (see Berg et al. 2017 for reasons).

Case study: Vltava valley forest dataset

We demonstrate the use of ESI in ecological studies on the relationship of specialist and
generalist plants to environmental variables using a local dataset of forest vegetation sam-
pled in a wide range of habitats. The dataset contains 97 vegetation plots of 10 m × 15 m
recorded by the first author of this paper along transects in deep sections of the Vltava
river valley in southern Bohemia, Czech Republic (Zelený & Chytrý 2007). Covers of all
the vascular plants and a set of environmental variables related to topography, soil prop-
erties and canopy cover were recorded in each plot. Topographical variables included
altitude (reflecting the height above the valley bottom), slope and folded aspect (devia-
tion from 22.5°), heat load (calculated from slope and aspect using the formula of
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McCune & Keon 2002) and within-plot terrain convexity in the vertical and horizontal
direction. Soil variables included soil depth, soil pH and soil type including lithic soils
(shallow soils on exposed rocky outcrops), stony soils (mostly in ravines), cambisols
(deep, well-developed soils on gentle slopes) and fluvisols (deep soils on the river
floodplain). Some plots contained more than one soil type. Cover of trees and shrubs was
estimated visually as a proxy of light availability in the forest understory. Only species in
the herb layer were included in the analysis. Since most of the plots were sampled in the
forest and only a few in canopy openings, we used the forest Ecological Specialization
Index (ESIf) for the analysis. The relationship between species ESIf and environmental
variables was analysed using two complementary approaches: the community weighted
mean approach and the fourth-corner approach. Species composition data were trans-
formed into presences-absences prior to the analysis.

We calculated the community weighted mean (CWM) of the Ecological Specializa-
tion Index for each vegetation plot as the mean ESIf of species in the plot (since the spe-
cies composition data were transformed to presences-absences, weights of all species are
the same). We related the calculated CWM values to each environmental variable using
Pearson’s r correlation coefficient and tested its significance by a permutation test with
49,999 permutations. Because standard tests of correlation between CWM and sample
attributes (in this case environmental variables) have inflated Type I error rate and gener-
ate overly optimistic results (Peres-Neto et al. 2017), we used the ‘max test’ strategy
introduced by ter Braak et al. (2012). The max test combines the row-based and column-
based permutation tests by choosing the higher P-value as the resulting significance. We
used the max test to analyse the relationship between CWM of ESIf and each of 13 envi-
ronmental variables separately, and adjusted the P-values for multiple comparisons using
the false discovery rate correction (FDR; Benjamini & Hochberg 1995). Following Dray
et al. (2014), we used a high number of permutations (49,999) to get enough power for
the P-value correction.

The fourth-corner approach is an alternative to the CWM approach in that it relates the
matrix of species attributes (here ESIf) directly to sample attributes (environmental vari-
ables) by inflating the matrix of species composition, without calculating CWM
(Legendre et al. 1997, Dray & Legendre 2008). Similar to CWM approach, there are sev-
eral alternative permutation schemes to test the significance of the fourth-corner correla-
tion, and the only one which controls for Type I error rate is also the max test strategy (ter
Braak et al. 2012). As in the CWM approach, we used max test with 49,999 permutations
and adjusted P-values with FDR correction. Instead of the original fourth-corner correla-
tion, which practically cannot reach the –1 and 1 values (Legendre et al. 1997), we report
the relationship based on a Chessel fourth-corner correlation, which is the original form
of fourth-corner correlation rescaled into the range from –1 to 1 (see Peres-Neto et al.
2017 for details). In fact, the fourth-corner and CWM approach are numerically closely
related (Peres-Neto et al. 2017). Since the CWM approach is perhaps more often used in
vegetation ecology (Zelený 2018), while the fourth-corner approach is considered as
more powerful (ter Braak et al. 2018), we used both methods in parallel to assess the rela-
tionship of ESIf to environmental variables.
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Software details

Data editing and plot identification by the expert system were done using JUICE software
(Tichý 2002). All the other calculations and plotting were done using the R program
(R Core Team 2017). Geographical stratification of the dataset by the HCR resampling
method was calculated using the function hcr from the package vegclust (De Cáceres
et al. 2010). ESI values were calculated using the library theta (Zelený, unpublished,
https://github.com/zdealveindy/theta), which is a generalization of the original R code for
�-value calculation developed by J. Fridley (Fridley et al. 2007, Electronic Appendix 2), for
calculating � using various beta-diversity metrics. Partial Spearman’s rank correlation was
calculated using the function pcor in the package ppcor (Kim 2015), and Tukey’s HSD
post-hoc test using the function HSD.test in the package agricolae (de Mendiburu 2017). In
the case study of the Vltava valley dataset, we tested the relationship between ESIf and
environmental variables using the functions test_cwm and test_fourth in the weimea pack-
age (Zelený, unpublished, https://github.com/zdealveindy/weimea). The R code for all the
analyses is stored in the GitHub repository (https://github.com/zdealveindy/esi_czech).

Results

Three sets of ESI values for species with 10 or more occurrences were calculated: from
the whole dataset (ESIw, 1597 species), non-forest dataset (ESInf, 1529) and forest dataset
(ESIf, 881 species). Non-forest and forest dataset shared 829 species. For each set of ESI
values, we also provide the frequency of each species in the particular dataset (freqw,
freqnf and freqf). Frequencies can be used to evaluate the reliability of the calculated ESI
values because the more samples the species occurs in, the more reliable is the informa-
tion about its co-occurrence pattern. The minimum frequency in all the three datasets was
set to 10 occurrences (the threshold to calculate beta diversity), while the maximum was
12,656 for the whole dataset (frequency of Achillea millefolium agg.), 12,442 for the non-
forest dataset (also Achillea millefolium agg.) and 5090 for the forest dataset (Oxalis

acetosella). This frequency can be used as a threshold for selecting species for analyses
(e.g. only species with frequency > 50 if more reliable ESI values are required). The val-
ues of ESI for each dataset (and corresponding species frequencies) are listed in Elec-
tronic Appendix 1 at www.preslia.cz.

The ESI values calculated from the whole dataset ranged from 2.83 to 8.37 with
a median of 4.97 (Fig. 1A). For both the non-forest and forest dataset, the range and
median values were similar (2.68–7.54, median 4.93 for non-forest, and 3.15–7.49,
median 5.08 for forest). The 10 most generalist and most specialist species (occurring in
at least 50 plots) for each dataset are in Table 1, listed separately for ESI of each dataset.

Comparisons of ESIw with other species attributes showed that this index is negatively
correlated with species frequency in the dataset (Fig. 1B, Spearman’s � = –0.30) and with
the number of associations in which the species occurs (Aocc), prevails (Arel) or dominates
(Aabs; Fig. 1C). The correlation of ESI with Aabs is the strongest (� = –0.58), being weaker
for Aocc (� = –0.46) and Arel (� = –0.45). Partial correlation, which controls for the effect
of species frequency in the dataset, returned values that are somewhat higher than those
of non-partial correlations (�part = –0.59 for Aabs, –0.59 for Aocc and –0.46 for Arel). ESIw is
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� Fig. 1. – (A) Distribution of Ecological Specialization Index values calculated using the whole, non-forest
and forest datasets, respectively. (B–F) Descriptive statistics of the Ecological Specialization Index calculated
from the whole dataset (ESIw) and their relationship to various species attributes. (B) Correlation between ESIw

and the frequency of species occurrence in the whole dataset. (C) Correlation between ESIw and the number of
phytosociological associations of the national vegetation classification system (Chytrý 2007–2013) in which
the focal species often occurs, calculated as an exponential of Shannon entropy index (Aabs). � – Spearman’s
correlation of ESI and Aabs, �part – partial Spearman’s correlation of ESI and Aabs while controlling for species
frequency (freqw). (D) Correlation between ESI and the number of habitats in which the species occurs (Sádlo
et al. 2007); � – Spearman’s correlation of ESI and Hocc, �part – partial Spearman’s correlation of ESI and Hocc

while controlling for species frequency (freqw). (E) Relationship of ESI to taxon origin (Pyšek et al. 2012);
archaeo – archaeophytes, neo – neophytes. (F) Relationship of ESI to species classification in the national Red
List, using the IUCN categories (Grulich 2017); RE – regionally extinct (with ESI value indicated by +), CR –
critically endangered, EN – endangered, VU – vulnerable, NT – near threatened and LC – least concern. All
analyses (Spearman’s rank correlation in B, C and D, and ANOVA in E and F) were significant at P < 0.001.
The letters above the barplots in E and F indicate whether Tukey’s HSD post hoc comparison between catego-
ries was significant at the level of P < 0.05 or not. If two notches drawn on the boxes do not overlap, this is an
indication that the medians of these groups differ significantly.

Table 1. – The list of species with the highest and lowest Ecological Specialization Index values calculated
from the whole (ESIw), non-forest (ESInf) and forest datasets (ESIf). Ten species with the highest ESI values
(specialists) and lowest ESI values (generalists) are listed for each dataset (specialists sorted by descending
and generalists by ascending ESI values). The frequency of species in each dataset is given in brackets. Only
species with at least 50 occurrences in a particular dataset were considered.

Whole dataset Non-forest dataset Forest dataset

Species name ESIw (freqw) Species name ESInf (freqnf) Species name ESIf (freqf)

Top specialists
Pinus strobus 7.40 (78) Empetrum nigrum agg. 7.19 (153) Pinus strobus 7.23 (78)
Empetrum nigrum agg. 7.20 (164) Trifolium rubens 7.17 (101) Rhododendron

tomentosum

7.23 (85)

Pinus uncinata

subsp. uliginosa

7.17 (102) Festuca psammophila

subsp. dominii

7.03 (60) Pinus uncinata

subsp. uliginosa

7.22 (112)

Chamaecytisus austriacus 7.02 (69) Coleanthus subtilis 6.97 (235) Andromeda polifolia 7.19 (69)
Rhododendron tomentosum 7.00 (106) Pulmonaria angustifolia 6.95 (57) Vaccinium uliginosum 6.78 (230)
Festuca psammophila

subsp. dominii

7.00 (64) Chamaecytisus austriacus 6.95 (71) Dryopteris expansa 6.65 (59)

Coleanthus subtilis 6.97 (234) Veronica orchidea 6.93 (63) Vaccinium oxycoccos agg. 6.57 (192)
Trifolium rubens 6.96 (109) Senecio aquaticus 6.86 (175) Eriophorum vaginatum 6.56 (337)
Senecio aquaticus 6.94 (170) Andromeda polifolia 6.85 (214) Polystichum aculeatum 6.47 (206)
Conringia orientalis 6.94 (51) Elatine triandra 6.83 (157) Carex pendula 6.39 (50)

Top generalists
Calamagrostis epigejos 2.83 (3230) Phragmites australis 2.87 (2263) Convolvulus arvensis 3.15 (53)
Phragmites australis 2.83 (2329) Pinus sylvestris 2.89 (383) Elymus repens 3.53 (186)
Verbascum densiflorum 3.19 (88) Betula pendula 2.93 (520) Poa compressa 3.54 (58)
Senecio viscosus 3.21 (512) Calamagrostis epigejos 2.93 (2508) Vicia cracca 3.54 (111)
Glyceria fluitans 3.22 (1894) Rubus sect. Rubus 2.99 (1567) Chenopodium album agg. 3.54 (78)
Urtica dioica 3.24 (11137) Populus tremula 3.01 (137) Tanacetum vulgare 3.64 (57)
Phalaris arundinacea 3.27 (3879) Poa nemoralis 3.05 (1604) Cirsium arvense 3.69 (127)
Persicaria amphibia 3.29 (1448) Frangula alnus 3.06 (254) Poa annua 3.69 (63)
Asplenium ruta-muraria 3.32 (351) Hieracium murorum 3.07 (576) Pinus sylvestris 3.71 (2530)
Rubus caesius 3.34 (1692) Fraxinus excelsior 3.15 (331) Arrhenatherum elatius 3.87 (449)
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Fig. 2. – Relationships between the Ecological Specialization Index calculated from the whole dataset (ESIw)
and Ellenberg-type indicator values for the Czech flora. Species with x value are considered as generalists
regarding the particular environmental gradient according to the national indicator value dataset.



also negatively correlated with the number of habitats in which a species occurs (Hocc, � =
–0.47, Fig. 1D) or has its optimum (Hopt, � = –0.37), although controlling for the effect of
species frequency slightly weakened these correlations (�part = –0.43 for Hocc and –0.30
for Hopt).

Considering species origin, neophytes (93 species) were significantly more generalist
than archaeophytes (186 species) and native species (1316 species) (Fig. 1E; global
ANOVA test: F = 9.0, P < 0.001; pairwise HSD test significant at P < 0.05). Species clas-
sified in the IUCN Red List categories CR (critically endangered, 69 species), EN
(endangered, 164 species) and VU (vulnerable, 127 species) were significantly more spe-
cialized than those classified in category NT (near threatened, 257 species). LC (least
concern) species (966) were significantly less specialized than species classified in any
other IUCN category (Fig. 1F; global ANOVA test, F = 88.8, P < 0.001; pairwise HSD
test significant at P < 0.05). The four species in category RE (regionally extinct),
Gentianella germanica, Salicornia prostrata, Suaeda prostrata and Triglochin

maritima, were not included in the ANOVA analysis (but are included in Fig. 1F).
There are various patterns in the relationships of ESI to Ellenberg-type indicator val-

ues for the Czech flora. In the case of indicator values for light, the species adapted to
shady habitats tended to be more specialized, while ESI values for light-demanding spe-
cies ranged broadly (Fig 2A). In the case of temperature and soil reaction (Fig. 2B, D)
there was a remarkable u-shaped response, with species adapted to the extreme condi-
tions being more specialized than species adapted to intermediate conditions. ESI was
negatively related to nutrients, with species adapted to nutrient-poor habitats being more
specialized and nutrient-demanding species more generalist (Fig. 2E). In contrast, ESI
did not show a clear relationship to moisture except for species with a moisture indicator
value of 10 being more generalist than the others (Fig. 2C). Species tolerant of a high or
extremely high salt content in the soil are more specialist than species tolerating no or low
salt contents in soil (Fig. 2F). Species without assigned Ellenberg-type indicator values
(indicated as ‘x’ on Fig. 2) tend to be more often generalists, with the exception of indica-
tor values for nutrients, where their ESIw values overlap with the range of ESIw for more
nutrient-rich soils.

The case study of forest vegetation in the Vltava valley revealed a significant (P <
0.05) or marginally significant (P < 0.1) relationship of ESI to several environmental
variables (interpretation based on FDR-corrected P-values for either CWM or fourth-cor-
ner approach, Table 2). Results of the community weighted mean approach are more con-
servative than results of the fourth-corner approach, with only two marginally significant
(P < 0.1) results compared to eight significant (P < 0.05) results of the fourth-corner
approach (Table 2). More specialized species occur in cooler, less sun-exposed habitats
(negative relationship with a folded aspect and heat load), on deeper soils with higher pH
and in shaded conditions under a closed canopy (positive relationship with soil depth, soil
pH and the cover of tree and shrub layer). Higher specialization was also recorded in
communities occurring on stony soils, especially in ravine forests on the lower parts of
the valley slopes (positive relationship with the occurrence of stony soils), while species
with low specialization prefer lithic soils, especially on exposed convex upper slopes
(negative relationship with the occurrence of lithic soils and vertical terrain convexity).
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Discussion

Measuring niche breadth of plant species: benefits and caveats

Experienced vegetation ecologists usually have a good empirical knowledge of the spe-
cies that tend to behave more as specialists or generalists based on field observations.
Here we provide an intuitive specialization index, which aims to quantify the breadths of
species realized niches based on the pattern of co-occurrence of the focal species with
other species in vegetation plots in which the focal species occurs (Fridley et al. 2007,
Zelený 2009, Botta-Dukát 2012).

Indeed, one needs to bear in mind that any measure of species specialization is con-
text-dependent. If specialization is quantified in terms of niche breadth based on specific
environmental factors, then it is only valid in this context, since species can be a specialist
along one but generalist along other gradients. The ESI values provided in this study
reflect realized species niche breadth along multiple gradients, but still, they are depend-
ent on the source dataset from which they were calculated, specifically on its spatial and
compositional context, because it influences the relative importance of individual envi-
ronmental variables (e.g. Siefert et al. 2012). We used a dataset that includes the range of
variation in vegetation recorded throughout the Czech Republic and calculated ESI
values separately for all vegetation types, non-forest vegetation and forest vegetation.
The absolute and relative values of ESI would have differed if calculated from a dataset
representing different spatial extent (either smaller, e.g. a certain area or locality, or
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Table 2. – Relationship between Ecological Specialization Index values calculated for forest vegetation (ESIf)
and selected environmental variables, using data from a local study of forest vegetation in the Vltava river val-
ley. The relationship was tested by correlating community weighted mean of ESIf with environmental variables
(CWM approach) and by relating ESIf directly to environmental variables using the fourth-corner metric
(fourth-corner approach). rCWM – Pearson’s correlation coefficient between CWM of ESIf and environmental
variables; rChessel – Chessel fourth-corner correlation; P – the significance of correlation using the Pmax test; Padj

– P values adjusted for multiple comparisons (false discovery rate correction). Significant (P < 0.05) adjusted
P-values are printed in bold, marginally significant (P < 0.1) in italics. Species composition data were pres-
ence-absence transformed prior to the analysis.

CWM approach Fourth-corner approach

Environmental variable rCWM P Padj rChessel P Padj

Altitude –0.176 0.384 0.454 –0.073 0.179 0.211
Slope –0.188 0.245 0.319 –0.068 0.217 0.236
Folded aspect (deviation from 22.5°) –0.519 0.005 0.064 –0.254 <0.001 <0.001
Heat load –0.266 0.145 0.241 –0.119 0.027 0.043
Vertical terrain convexity –0.383 0.052 0.112 –0.166 0.002 0.004
Horizontal terrain convexity –0.201 0.187 0.270 –0.081 0.139 0.180
Lithic soil –0.360 0.048 0.112 –0.163 0.002 0.004
Stony soil 0.350 0.027 0.104 0.176 0.001 0.002
Cambisol 0.089 0.510 0.510 0.015 0.786 0.786
Fluvisol 0.157 0.476 0.510 0.102 0.106 0.154
Soil depth 0.420 0.011 0.070 0.196 0.000 0.001
Soil pH 0.311 0.148 0.241 0.123 0.023 0.042
Cover of tree and shrub layer 0.369 0.032 0.104 0.186 0.001 0.002



larger, e.g. central Europe), or different subset of vegetation types (e.g. only broad-leaved
forest vegetation as in Zelený et al. 2010 or Marinšek et al. 2015, only non-forest vegeta-
tion as in Fajmonová et al. 2013, or only synanthropic vegetation as in Šilc et al. 2014).
Therefore, researchers planning to use the ESI values presented here need to consider
whether the context in which they were calculated is relevant to the study they are con-
ducting.

The dependence of ESI on the quality of the source dataset also means that the values
may be negatively affected by sampling bias. If samples from some habitats are under-
represented in the dataset, then some species with a broad niche may appear as more spe-
cialized. An extreme example is Pinus strobus, an introduced North American species
planted for timber that is invasive in sandstone areas in the northern part of the Czech
Republic (Hadincová et al. 2008, Pyšek et al. 2017). The original dataset contains 121
plots with Pinus strobus, of which 85 were selected by geographical stratification. From
these plots, most (67) were sampled in the Bohemian Switzerland National Park by a sin-
gle author, while the remaining plots are mostly forestry plantations with scattered occur-
rence across the whole of the Czech Republic. The calculation of ESIw for this species
was based on 78 plots, since some were removed as outliers because their species compo-
sition differed too much. As a result, Pinus strobus was identified as one of the most spe-
cialized in our dataset with ESIw = 7.40 (considering ESIw with freqw � 10).

In contrast, some of the species identified as generalists based on our calculation may
actually be more specialized. This can happen, for example, if a species is a specialist of
a fine-scale habitat, which is often a part of a mosaic with other habitats. For example,
Asplenium ruta-muraria, a specialist species of calcareous rocky outcrops and walls,
occurs on large cliffs with specialized chasmophytic species and on small outcrops
within grasslands or forests. As a result, this species is considered a generalist based on
ESI (ESIw = 3.32), because it co-occurs in vegetation plots with many species with differ-
ent ecological requirements, which decreases its ESI value.

The ESI values calculated in this study are estimates of the size of the realized niche of
species (Hutchinson 1957). They result from the interaction of three factors: (i) species
fundamental niche, (ii) availability of suitable habitats for the focal species in the study
area, and (iii) biotic interactions with other species. The fundamental niche is determined
by species physiological limits that are a result of evolution. The actual availability of
habitats in a study area influences whether a species is categorized as a generalist or a spe-
cialist, since even a generalist that is potentially able to occupy a wide range of habitats
may appear to be a specialist if most of its suitable habitats do not occur in the area (Wagner
et al. 2017). Biotic interactions such as competition or facilitation are also important
determinants of a species realized niche, although they are difficult to measure directly.
Biotic interactions depend on the composition of the regional species pool, namely the
presence or absence of competitors that would narrow the realized niche or facilitators
that would broaden it (Pulliam 2000). The fundamental niche of a taxonomically homo-
geneous species is constant across different regions, while realized niche may differ as a
result of between-region differences in habitat availability and species pool composition,
influencing biotic interactions. (Coudun & Gégout 2005, Hájková et al. 2008, Wasof et al.
2013, Wagner et al. 2017). Thus, the specialization values recorded in this study are spe-
cific to the Czech Republic and not directly applicable elsewhere. The regional validity of
ESI values is analogous to the regional validity of species indicator values (e.g. those of
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Ellenberg et al. 1991), which may need to be recalibrated when used in regions other than
those for which they were initially proposed (e.g. Borhidi 1995, Hill et al. 2000, Pignatti
et al. 2005, Chytrý et al. 2018).

Comparisons of the Ecological Specialization Index with other species attributes

Although we were unable to revise the calculated ESI values for each species, compari-
sons with other species attributes suggest that they provide ecologically meaningful
information. The ESI values correlate with other measures of species specialization, such
as the number of (effective) phytosociological associations or habitats in which the focal
species occurs. In principle, all three metrics evaluate species specialization according to
differences in the species composition of plots in which the focal species occurs, mea-
sured either as beta diversity (ESIw, ESInf, ESIf), the number of floristically distinct vege-
tation units (Aocc, Arel, Aabs) or the number of ecologically distinct habitats (Hocc, Hopt). The
ESI values are more tightly correlated with the association-based metrics, representing
finely divided vegetation types, than with the habitat-based metrics, representing coarsely
divided vegetation types. In this sense, they seem to describe realized niche breadth with
finer resolution than could be obtained by simply determining the broadness of the habi-
tats in which the species occur. This study could use a consistent and comprehensive
phytosociological vegetation classification (Chytrý 2007–2013, 2017) and habitat classi-
fication that are both available for the Czech Republic (Sádlo et al. 2007, Chytrý et al.
2010). Therefore, ecological specialization of species in this country can be measured in
different ways. However, since such classifications are not available in many other coun-
tries, national ESI datasets derived from national vegetation databases (Dengler et al.
2011, Chytrý et al. 2016, Bruelheide et al. 2019) provide a realistic alternative.

Species listed in the national Red List in higher risk categories are on average more
specialized than less threatened species. Threatened species are often specialists of cer-
tain habitats, and their decline is caused by the decline in this habitat. The IUCN Red List
criteria also consider the decline in area, extent and/or quality of habitats, in combination
with the restricted extent of occurrence or small area of occupancy (IUCN 2012). An
example from the Czech flora of the relationship between narrow habitat specialization
and species decline is Salicornia prostrata, a species classified in the IUCN Red List cat-
egory RE (regionally extinct; Grulich 2017). It was identified as the fourth most special-
ized species in this study (with ESIw = 7.5 when considering species occurring in at least
10 plots, Electronic Appendix 1). This species was confined to specific inland saline hab-
itats (Vicherek 1973), which were destroyed, and the species went extinct in the 1970s
(Šumberová in Chytrý 2007). Among the 10 most specialized species identified in this
study (considering ESIw for species occurring in at least 50 plots, Table 1), seven are
listed in some of the IUCN Red List categories (i.e. CR, EN, VU or NT). This does not,
however, imply that species with high ESIs have higher conservation value because some
of them are specialists of habitats that are widespread and not currently threatened.

When we compared the specialization values of native species and two groups of
aliens, early introduced archaeophytes and more recently introduced neophytes (Pyšek et
al. 2012), more neophytes appeared to be generalist than archaeophytes and native spe-
cies. This pattern is consistent with the results of earlier central-European studies that
show the proportion of archaeophytes within plant communities to be much more
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dependent on habitat than the proportion of neophytes (Chytrý et al. 2008, Lososová et al.
2012). This possibly reflects the longer residence time of archaeophytes in the areas stud-
ied (Pyšek & Jarošík 2005), during which these species have managed to colonize most
of the habitats to which they are preadapted, or develop adaptations for occupying newly
encountered habitats (Alexander & Edwards 2010) and establish populations at most of
the suitable sites. Consequently, these species have on average similarly strong relation-
ships to habitats as native species, which have been in the study area for much longer. In
contrast, many neophytes, most of which were introduced during the last two centuries
(Pyšek et al. 2012, 2017), probably have not yet established tight relationships with spe-
cific habitats and their distributions are to a large extent driven by propagule pressure
(Chytrý et al. 2008). Therefore neophytes appear to be more generalist than native spe-
cies and archaeophytes. Another explanation can be that species growing on a broader
range of habitats in the area of their native distribution can be better adapted to various
conditions in the area they invaded and thus may become more successful invaders
(Kalusová et al. 2017).

Comparisons of the ESI values with Ellenberg-type indicator values were consistent
with the expected pattern that species occurring near the extremes of individual environ-
mental gradients would be more specialized than those occurring in the middle of these
gradients. This is valid especially for temperature, reaction and to some extent also light.
For moisture, the ESI values were distributed relatively uniformly from dry through
mesic to wet habitats, except for species with the moisture indicator value of 10. This
value is assigned to amphibious plants that grow in water but can also grow in drained
habitats for long periods (Ellenberg et al. 1991, Chytrý et al. 2018). Therefore they co-
occur both with aquatic and terrestrial plants, which is reflected in their low values of
ESI. Only nutrient indicator values have a clear monotonous relationship with species
niche breadth, with oligotrophic species being more specialized. This pattern probably
reflects the fact that while nutrient-rich habitats are rather similar to each other, there are
several different kinds of nutrient limitation at nutrient-poor sites (Tilman 1982), e.g.
nitrogen limitations vs phosphorus limitation (Braakhekke & Hooftman 1999), and there
can be interactions with other factors that limit the availability to plants of the nutrients
present at the site (e.g. drought or high pH that limits availability of phosphorus; Tyler
2003).

Practical application and future outlook

In this paper, we provide a dataset of relative estimates of species specialization for
a large proportion of the temperate flora in central Europe, with separate estimates for
non-forest habitats and forests. Our tests in which we compared this dataset with other
plant attributes and used it in a local study indicate that the values of the Ecological Spe-
cialization Index provide ecologically meaningful information. Still, experience of using
this kind of data are currently limited and further testing in other studies, involving criti-
cal evaluation of the results, is needed.

For researchers planning to use these ESI values in their studies, we have the follow-
ing practical suggestions. Of the three sets of ESI values provided in this study (ESIw,
ESInf and ESIf), researchers are advised to choose the one that is most appropriate for the
vegetation they are studying (i.e. choose ESInf if only studying non-forest vegetation,
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ESIf if only studying forest vegetation, and ESIw if the study includes both forest and non-
forest vegetation). Specific values of the ESI have meaning only in the context of the
other values calculated using the same compositional dataset, and cannot be mixed with
values calculated using a different dataset (e.g. values based on the forest dataset should
not be mixed with those based on the non-forest dataset, or values based on Czech data
provided here cannot be mixed with values calculated from data collected within other
geographical regions). Although theoretically, ESI can reach values in the range between
0 and 9, practically this range is narrower (2.83–8.37 in the case of ESIw) and it may be
useful to set arbitrary thresholds to distinguish species that can be considered as general-
ists, specialists or indifferent. Here, as a rule of thumb, we propose to call species with
ESIw < 4 as generalists and ESIw > 6 as specialists (the range of ESIw between 4 to 6
includes 74% of the species for which there is a value of ESIw). However, different
thresholds can be used in individual studies. Although ESI can be calculated with a high
precision, in practice it is perhaps not useful to report its values with a precision greater
than one or two decimals. Finally, the quality of ESI values is increasing with the fre-
quency of the species occurrence in the source dataset. Here, we provide ESIs calculated
for species with at least 10 occurrences, but we encourage researchers to filter species
with higher frequency (e.g. 20, 50 or even 100 occurrences) for the purpose of particular
studies. There is an inherent trade-off between quantity and quality; a low frequency
threshold will result in more species with low-quality ESI values, while higher frequency
threshold will result in fewer species with high-quality ESI values.

So far, a national list of co-occurrence based specialization values was published only
for the flora of France (Mobaied et al. 2015) based on 135,002 vegetation plots from the
SOPHY database (Garbolino et al. 2012). While the study of Mobaied et al. (2015) lists
specialization values calculated using three different beta-diversity metrics, we went
a step further and offer an ecological interpretation of these values and illustrate their use
in a local case study. Unfortunately, the use of different beta-diversity metrics and differ-
ent frequency thresholds to calculate �-values hampers the comparability of specializa-
tion values from different studies. For example, although one of the beta-diversity met-
rics used by Mobaied et al. (2015) was �w which we also used in this study, the absolute �-
values are not comparable with those used in our study since the number of plots used to
calculate is different (50 plots in Mobaied et al. 2015 vs 10 plots in this study). We sug-
gest two alternative options for potential future studies publishing co-occurrence based
specialization values. One option is to offer values calculated using several different beta
diversity metrics (preferentially multiple beta, additive beta and pairwise or multisite
Simpson metric) and several frequency thresholds to calculate the beta diversity (e.g. 10,
20 and 50 plots). An alternative option is to use a standard way of calculating and present-
ing the values. The approach introduced in this paper, based on calculating �-value by
multiple beta rarefied to 10 plots after removing the outliers, converting it into Ecological
Specialization Index on the scale 0–9 and complementing with species weights expressed
as species frequencies in the source dataset, is our proposal for a standard way of express-
ing co-occurrence-based specialization. ESI has an intuitive interpretation, since (unlike
�) it increases with increasing species specialization, and calculation based on rarefied
multiple beta is fast even when using large source datasets. Additional availability of
weights (species frequencies in the source dataset) allows for post-hoc selection of only
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those species with calculated ESI that occur in the source dataset with sufficient fre-
quency (e.g. 50).

Our new dataset, as well as other similar datasets which can be developed for other
areas, have multiple applications in ecological research. Habitat specificity (i.e. niche
breadth) is one of three key components defining species rarity (Rabinowitz 1981), but in
contrast to the other two components, geographic range size and local population size,
data on niche breadth are usually missing for most species. The availability of datasets
containing measures of niche breadth for large proportions of regional floras can facili-
tate studies exploring the relationship between different components of rarity (Slatyer et
al. 2013). They can also be linked to data on plant traits (e.g. Kattge et al. 2011) to explore
how individual traits relate to niche breadth (Fridley et al. 2007, Marinšek et al. 2015).
They may be useful in local ecological studies in which information about species spe-
cialization is needed; this is illustrated by our local case study, in which we analysed the
relationship between community-level ecological specialization and measured environ-
mental variables using the community weighted mean and the fourth-corner approaches.
Besides their use in fundamental research, these values can be used for species conserva-
tion assessment, for example as a source of information for regional Red Lists (if com-
bined with information about habitat decline), or for predicting the response of rare
species to environmental changes (e.g. Bovee et al. 2018).
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Souhrn

Ačkoliv teoreticky je koncept ekologické specializace druhů velmi užitečný, v praxi obvykle chybí dostatek re-
levantních dat o proměnných prostředí, aby jej bylo možné numericky vyjádřit. V této studii představujeme in-
dex ekologické specializace (Ecological Specialization Index, ESI), který kvantifikuje šířku realizované niky
druhů podél několika ekologických proměnných najednou. Koncept ESI vychází z indexu specializace theta
(Fridley et al. 2007), který je počítán na datech o společném výskytu daného druhu s ostatními druhy v různých
společenstvech. Na základě vegetačních dat z České národní fytocenologické databáze jsme vypočetli ESI pro
všechny druhy, které se v databázi vyskytují alespoň v deseti fytocenologických snímcích. Připravili jsme tři
seznamy ESI hodnot, spočtených na základě fytocenologických snímků zahrnujících (i) všechny vegetační
typy (ESIw, 1597 druhů), (ii) pouze nelesní vegetační typy (ESInf, 1529 druhů) a (iii) pouze lesní vegetační typy
(ESIf, 881 druhů). Společně s hodnotami specializace uvádíme i frekvence výskytu jednotlivých druhů v data-
bázi, protože kvalita vypočtené hodnoty ESI vzrůstá s frekvencí výskytu druhu v databázi. ESI hodnoty uvede-
né v této studii jsou použitelné pouze v rámci vegetace České republiky. Abychom ohodnotili ekologickou
smysluplnost vypočtených ESI hodnot, porovnali jsme je s řadou dalších dostupných druhových vlastností
a také otestovali jejich vztah k faktorům prostředí v rámci lokální případové studie. Výsledky ukazují, že ESI
druhu průkazně koreluje s počty vegetačních asociací a biotopů, ve kterých se daný druh vyskytuje. Druhy za-
řazené do kategorií vyššího ohrožení v národním Červeném seznamu jsou v průměru více specializované než
druhy zařazené v kategoriích nižšího ohrožení. Neofyty jsou v průměru méně specializované než archeofyty
a původní druhy. Při srovnání s ellenbergovskými hodnotami kalibrovanými pro Českou republiku se ukázalo,
že specializované druhy jsou spíše stínomilné, lépe adaptované na živinami chudé půdy, na půdy s buď nízkým,
anebo vysokým (ale nikoliv středním) pH a na teplá, anebo chladná stanoviště. V rámci případové studie zamě-
řené na druhy bylinného patra v podrostu lesů na svazích hlubokého říčního údolí se ukázalo, že více speciali-
zované druhy se vyskytují na hlubokých půdách chladných severních svahů, kamenitých půdách na bázích
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údolních svahů a stinných stanovištích s vyšší pokryvností stromového patra. Naopak mělké půdy na horních
částech jižních svahů a na stanovištích s otevřeným stromovým zápojem jsou spíše osidlovány generalisty. Se-
znam hodnot indexu ekologické specializace pro druhy vyskytující se v České republice je dostupný v elektro-
nické příloze této studie.
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Appendix 1. – Formulas used to calculate the number of effective phytosociological associations.

Calculation of “the number of effective phytosociological associations” in which the focal species occurs in
a high relative proportion of the vegetation plots of that association (Arel)

A erel
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 (eq 1.1)
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where p(rel)i is the normalized proportion of plots in association i in which the focal species occurs, ni is the num-
ber of plots within association i in which the focal species occurs, Ni is the number of all plots within the associ-
ation i, and A is the number of all associations in the dataset. To make sure that the sum of p(rel)i will be equal to
1, we added the normalization constant to eq 1.3.

Calculation of “the number of effective phytosociological associations” in which the focal species occurs in
a high absolute number of vegetation plots of that association (Aabs)

A eabs
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(eq 2.3)

where p(abs)i is the normalized number of plots in association i in which the focal species occurs, ni is the number
of plots within association i in which the focal species occurs, Ni is the number of all plots within the associa-
tion i, and A is the number of all associations in the dataset. To make sure that the sum of p(abs)i will be equal to
1, we added the normalization constant to eq 2.3.
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